Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid

Authors: Husheng Li, Lifeng Lai, and Robert Qiu

Presenter: Mustafa El-Halabi

Submitted in Partial Fulfillment of the Course Requirements for ECEN 689: Cyber Security of the Smart Grid Instructor: Dr. Deepa Kundur

Main Objective

Establishing fundamentals limits (information-theoretic limits) for secure transmission of State Estimation in the Smart Grid

Outline

- 1. Confidentiality Techniques
- 2. Mathematical Background
- 3. Information-theoretic Security
- 4. Smart Grid Dynamic Model
- 5. Security Metric for Smart Grid Dynamic Model
- 6. Fundamental Limits for Secure Communications
- 7. Concluding Remarks

Smart Grid :

- Wireless links prone to eavesdropping attacks
 - $1. \ \ {\rm active \ eavesdropping}$
 - 2. passive eavesdropping

Smart Grid :

- Wireless links prone to eavesdropping attacks
 - 1. active eavesdropping
 - 2. passive eavesdropping
- Security issues:
 - Confidentiality
 - Integrity
 - Authentication
 - Nonrepudiation

Confidentiality techniques

• Cryptography: Private-key / Public-key cryptosystems

Confidentiality techniques

- Cryptography: Private-key / Public-key cryptosystems
- Information-theoretic security

• Entropy

- A measure of uncertainty associated with a random variable
- Entropy of a discrete r.v. X with values $\{x_1, ..., x_n\}$:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

- Entropy of a fair coin =1 bit, entropy of a biased-(1/3,2/3) coin =0.81 bits

- Entropy
 - $-\,$ A measure of uncertainty associated with a random variable
 - Entropy of a discrete r.v. X with values $\{x_1, ..., x_n\}$:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

- Entropy of a fair coin =1 bit, entropy of a biased-(1/3,2/3) coin =0.81 bits
- Conditional entropy (Equivocation)
 - A measure of the remaining uncertainty of a r.v. Y given that the value of X is known
 - Conditional entropy of Y given X:

$$H(Y|X) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

- Mutual Information
 - A measure of how much knowing one r.v. reduces our uncertainty about another r.v.
 - I(X; Y) = H(Y) H(Y|X)

- Mutual Information
 - A measure of how much knowing one r.v. reduces our uncertainty about another r.v.
 - I(X;Y) = H(Y) H(Y|X)
- Channel Capacity

$$X \longrightarrow Channel \longrightarrow Y$$

- Rate (bits/s) of reliable transmission = I(X; Y)
- Channel Capacity

$$C = \max_{p(x)} I(X; Y)$$

Class Presentation, Mustafa El-Halabi

Information-Theoretic Security for the Smart Grid

Goal:

Establish fundamental limits on the rate (bit/s) at which *secure* and *reliable* system state estimation in a smart grid could be communicated (Secrecy Capacity)

Class Presentation, Mustafa El-Halabi

ECEN 689: Cyber Security of the Smart Grid, Spring 2011

A Smart Grid System Model

$$egin{array}{rcl} Y &=& X+N_1\ Z &=& X+N_1+N_2\ E[|X|^2] \leq P, \, N_1 \sim \mathcal{N}(0,\sigma_1^2), \, N_2 \sim \mathcal{N}(0,\sigma_2^2) \end{array}$$

Class Presentation, Mustafa El-Halabi

Security Metric: Normalized Equivocation

$$\Delta = \frac{H(S^{k}|Z^{N})}{H(S^{k})}$$

= residual uncertainty about the message at the eavesdropper
=
$$\begin{cases} 0 & no \ secrecy \\ 1 & perfect \ secrecy \end{cases}$$

Secrecy Capacity of the Gaussian Wiretap Channel

 Information source S is ergodic and belongs to finite-length alphabet: Secrecy Capacity

$$C_s = \frac{1}{2}\log\left(1 + \frac{P}{\sigma_1^2}\right) - \frac{1}{2}\log\left(1 + \frac{P}{\sigma_2^2 + \sigma_1^2}\right)$$

Smart Grid Security Meter

Normalized equivocation Δ needs to be modified:

- 1. SG is a dynamic system, information might not be ergodic
- 2. Source alphabet in SG is continuous

Fundamental limits need to be revisited in the context of SG !

Dynamics of a SG

$$\mathbf{x}(t+1) = F(\mathbf{x}(t), w(t))$$

 $\mathbf{x}(t) = state \ vector \ at \ time \ slot \ t$
 $w(t) = random \ factor$
 $F = map \ previous \ state \ to \ next \ state$

Redefining "Equivocation" for the SG

$$\Delta = \frac{H(S^k|Z^N)}{H(S^k)} = \frac{?}{?}$$

Tools:

- 1. Topological Entropy
- 2. Spanning Set

Topological Entropy

$$\mathbf{x}(t+1) = F\left(\mathbf{x}(t), w(t)\right)$$

Definition: Topological Entropy

$$H(F, \mathcal{X}) = \lim_{\epsilon \to 0} \lim_{k \to \infty} \frac{1}{k} \log q(k, \epsilon)$$

 $H(F, \mathcal{X})$ is the uncertainty of the dynamic system log $q(k, \epsilon)$ is the number of bits to describe an approximation (ϵ) of system's dynamic behavior during time slot k.

Spanning Set

$$\mathbf{x}(t+1) = F\left(\mathbf{x}(t), w(t)\right)$$

Let \mathcal{X}_k = set of all possible { $\mathbf{x}_1, ..., \mathbf{x}_k$ }

Definition: (k, ϵ) -Spanning Set

For $k > 0, \epsilon > 0$, a finite set $Q \subset \mathcal{X}_k$ is (k, ϵ) -spanning set if, for any $\mathbf{x} \in \mathcal{X}_k$, we can always find an $\hat{\mathbf{x}} \in Q$, s.t. $\| \mathbf{x}(t) - \hat{\mathbf{x}}(t) \|_{\infty} < \epsilon, t = 1, ..., k.$

Revisiting Equivocation Δ

- For ergodic finite-length alphabet source: $\Delta = \frac{H(S^k|Z^N)}{H(S^k)}$
- Using topological entropy: $H(S^k) \rightarrow H(F, \mathcal{X})$
- Using (k, ϵ) -Spanning Set: $H(S^k|Z^N) \rightarrow H(F, \mathcal{X}|Z)$

For a SG dynamic system:
$$\Delta = \frac{H(F, \mathcal{X}|Z)}{H(F, \mathcal{X})}$$

Reliable & Secure Communication: Definitions

Secure System

If communication between sensor and controller satisfies $\Delta=1,$ the communication is secure.

Secure Communication Requirement for the Smart Grid

Main results:

- If $H(F, \mathcal{X}) \leq C_1 C_2$, reliable and secure communication is guaranteed.
- If $C_1 C_2 < H(F, \mathcal{X}) \le C_1$, only reliable communication is guaranteed.
- If $H(F, X) > C_1$, neither reliable communication nor security is guaranteed.

where,
$$C_1 = \frac{1}{2} \log \left(1 + \frac{P}{\sigma_1^2} \right)$$
, $C_2 = \frac{1}{2} \log \left(1 + \frac{P}{\sigma_2^2 + \sigma_1^2} \right)$

Assessment

- First Information-theoretic approach to smart grid security
- The Fundamental limits for secure communication in a smart grid environment build foundation for more precise problems, with answers that could provide important insights into the nature of secret communication
- The insights may be used to shape development of practical systems for encryption in complex settings
- The model considered is far simpler than the practical case
- A multiuser setting needs to be investigated

References

- Y. Liang, S. K. Yan-Cheong, and M. Hellman, "The Gaussian Wiretap Channel," *IEEE Trans. Inform. Theory*, vol. 24, pp. 451–456, July 1978.
- Y. Liang, A. S. Matveev, and A. V. Savkin, "Estimation and Control Over Communication Networks," Birkhauser, 2009.
- C. E. Shannon, "Communication theory of secrecy systems," *Bell Systems Technical Journal*, vol. 28, pp. 656–715, Oct. 1949.
- Y. Liang, H. V. Poor, and S. Shamai (Shitz), "Information Theoretic Security," *Foundations and Trends in Communications and Information Theory*, vol. 5, nos. 4-5, pp. 355–580, Now Publishers, Hanover, MA, USA, 2008.